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Stacking Models of Vesicles and Compact Clusters 

Thomas Preliberg ~'2 and Aleksander L. Owczarek 1 

Received November 1, 1994; final January 27, 1995 

We investigate three simple lattice models of two dimensional vesicles. These 
models differ in their behavior from the universality class of partially convex 
polygons, which has been recently established. They do not have the tricritical 
scaling of those models, and furthermore display a surprising feature: their 
(perimeter) free energy is discontinuous with an isolated value at zero pressure. 
We give the full asymptotic descriptions of the generating functions in area and 
perimeter variables from the q-series solutions and obtain the scaling functions 
where applicable. 

KEY WORDS: Exact solution; scaling; vesicles; stacks; Ferrers diagrams; 
cluster models; polygons; polyominoes. 

1. I N T R O D U C T I O N  

Stacking models of  compact  clusterings of  molecules were first considered 
physically as descriptions of the form of crystal surfaces ~1~ in two dimen- 
sions. Mathematically they are intimately connected to the partitioning of  
integers t2-5~ and are prototypical  objects for the study of  geometric phase 
transitions.t6, 7~ Recently, the enumeration of  lattice polygon configurations 
by area and perimeter has been of  interest in the understanding of  the shapes 
of flexible vesicles, ts~ The generic structure of  the resulting phase diagram 
contains a point where, mathematically, tricritical scaling is observed. 
The analysis of  partially convex subsets of  self-avoiding polygons tg" ~0~ 
has confirmed this behavior while allowing a fairly complete mathematical 
description. These partially convex polygons form a universality class with 
the same crossover exponent as expected in the unrestricted problem. The 
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(0 )  " ' "  

/ /  
Fig. 1. Typical configurations of the stacking vesicle models: (0) rectangles; (1) Ferrers 

diagrams; and (2) stacks. 

stacking models can also be extended to describe vesicles. Solutions for the 
full area-perimeter generating functions necessary for these descriptions 
have been calculated by several groups (5" 11, 12).3 or have been known under 
other guises. (3) Here we are interested in the asymptotics of  these solutions. 
We also consider the semicontinuous versions of  the models, which are 
shown to have the same asymptotic behavior, where applicable. This allows 
us to determine the phase diagrams of  the stacking models and extract 
their scaling functions. We explicitly demonstrate that the tricritical forms 
are absent in these models and catalog the nature of  each phase transition 
mathematically. While a few of  the results contained in this work were 
known previously, we provide a self-contained discussion for reasons of 
clarity. 

This work is concerned with three models (see Fig. 1). The first is 
trivial (at least in definition): simple rectangles. The other two are Ferrers 
diagrams (2'14"1' 3)'4 and stacks. ~1"15"16~ This hierarchy is of  pedagogical 
value, as we can consider the effect of the successive addition of complexity. 
In contrast to this, we have found a unity to the mathematical  description 
of  these models. For  both reasons it is natural to present all three models 
together. 

For  each of  these models, we define the generating function as follows. 
...... ~' be the number  of polygons with 2nx horizontal  steps and 2ny Let c,, 

vertical steps which enclose an area of size m. (Clearly the numbers of 
horizontal and vertical steps are even.) We then define the polygon 
generating function G(x, y, q) to be 

G ( x , y , q ) = ~ . , c , , ,  ..... ' x  y " (1.1) 

3 M. Bousquet-M61ou, M. Delest, E. J. Janse van Rensburg, M. C. Tesi, S. Whittington, and 
the present authors all have recently calculated the area-perimeter generating function for 
stacks. 

4A brief summary of some of the results for this model was announced in ref. 13. 
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This  genera t ing  func t ion  al lows us to cons ider  the fixed area  Am(x, y) 
and  fixed per imeter  P,(q) par t i t i on  funct ions ,  

Am(x, y)=~c""~'x"~y "y a n d  P.(q) =~e~.q" (1.2) 
n m 

where c~ is the n u m b e r  of  po lygons  wi th  a 2n-s tep per imeter  tha t  encloses 
an area of  size m, since 

G(x, y, q) = Z  Am(x, Y) q" (1.3) 
ra 

and  

G(z, q) = G(z, z, q) = ~ P.(q) z" (1.4) 
n 

Let us first cons ider  the genera t ing  func t ion  G(z, z, q) as a power  series 
in z with coefficients P.(q). Its rad ius  of  convergence  zc(q) is given by 

z c ( q ) =  l im p,(q)-l/, (1.5) 
t ; ~  oo  

Hence, the rad ius  of  convergence  in  z is s imply related to the ( reduced)  
per imeter  free energy f(q) as zc(q) = exp( f (q ) ) .  In  o ther  vesicle models  (s' 9) 
the dependence  of  the rad ius  of  convergence  Zc(q) on q is expected to be 
of the generic  form s h o wn  in Fig. 2(a). The  func t ion  zc(q) is an  analyt ic  
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Fig. 2. The schematic form of the locus of singularities of the area-perimeter generating 
functions for vesicle models: (a) generic vesicle model; (b) stacks and Ferrers diagrams. 
Considered as a function of z, it is a continuous function, while considered as a function 
of q, it has a jump discontinuity at q = 1 in both cases. Furthermore, in case (b) there is an 
isolated point zc(1) at q = 1; in case (a), limq_ I- zc(q)= z,.(l). 
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function of q for O < q <  1 with a jump to Zc--O for q >  1. In the more 
complex polygon models such as staircase polygons, one finds that 
z s = zc( 1 ) and limq ~ 1- Zc(q) coincide, and that the scaling behavior around 
the point (z = zs, q = 1) is tricritical (see below). 

However, a study of  the simpler models revealed that this need not  be 
the case. 5 In fact, we will show below that for stack polygons and Ferrers 
diagrams 

1 =  lim zc (q )<zc (1 )<  lim zc(q)=O (1.6) 
q ~  1 -  q ~  1 + 

that is, there is a jump discontinuity in zc(q) at q = 1 with an isolated point 
at zs= zc(1) (that is, a zeroth-order phase transition), and we will get the 
behavior depicted in Fig. 2(b). 6 We now have different scaling behavior in 
the generating function around (1, 1) and (1, z~). (In the semicontinuous 
models we define later, it is usual to consider the partition functions of  
either fixed horizontal or vertical perimeter; this gives the same generic pic- 
ture as described above.) Because of  the isolated point / jump discontinuity 
in z~(q) there is no crossover scaling form (see below) for P,,(q) around 
q = 1 for large n. 

One can also consider the radius of convergence of  the generating 
function in the variable q. This is defined as 

qc(x, y) = lira Am(x, y ) - l /m (1.7) 
t ~ t  ~ o o  

Let us consider putting z = x = y and then vary z (alternately one could fix 
x and vary z = y). In the stacking models we will show that there are three 
types of behavior. For  z > 1 the generating function has a pole at its radius 
of  convergence qc(Z). As z approaches 1 we have q~(z) ~ 1. For  z, < z ~< 1 
the generating function has a divergent essential singularity: 

G(z, q) ,,~ A( 1 - q)~ e s/~l - q) ( 1.8 ) 

and the power 6 takes on different values for z = 1 and z < 1. For  z = z~ 
there is a power-law singularity in the generating function. Finally, for 
z < z, the generating function converges to a constant and, moreover,  has 
a (convergent) essential singularity which can be expressed as an 
asymptotic expansion. 

The behavior of  the generating function on approaching the radius 
of  convergence gives information on the asymptotic behavior of the parti- 
t ion functions for large sizes. For  example, the behavior of  G(x, y, q), 

5 This was pointed out to us by E. J. Janse van Rensburg and S. Whittington. 
6 This behavior does not contradict the usual convexity property of the free energy, since it is 

unbounded for q > 1. 
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considered as a polynomial in q, near the radius of convergence qc(x, y) 
gives the asymptotic behavior of Am(x, y) for large m. Hence, the different 
asymptotic behaviors of the generating function described in the previous 
paragraph can be translated to behaviors for the partition function. When 
the generating function behaves as 

then 

A 
G(z, q ) , , , -  (1.9) 

(qr 

AqT~' 
Am(z) ~ ~ q ~ ' m  y- ~ (1.10) 

If the generating function has the divergent essential singularity behavior 
described in Eq. (1.8), then 

A e2~B,,,pn m -(2~5 + 3)/4 ( 1.11 ) Am(z) ~ (4n)1/2 B(2~+ 5)/4 

The convergent essential singularity will be seen later to imply that 

Am(z) ~ Ce-bl")t/'-ma (1.12) 

with b > 0. 
For the partially convex models such as staircase polygons the tri- 

critical behavior mentioned is defined as follows. Around the tricritical 
point (z=zs,  q= 1) the two-variable generating function scaled by its 
behavior on approaching q = 1 fixed at z = G is asymptotically equal to a 
function of one variable (known as the scaling variable). This one variable 
is a product of powers of the distances to the tricritical point in the two 
directions. Mathematically, for z---, zs and q---, 1 we expect 

( 1 - q)~': G(z, q) ~ if(( 1 - q) -* (z - G)) (1.13) 

where G(G, q ) ~ A ( 1 - q ) - Y "  and $ is the crossover exponent. Moreover, 
the (tricritical) scaling function if(2) describes the crossover between the 
power-law behavior for z > G through the scaling region where there is a 
different power-law behavior (characterised by the exponent y,) to a con- 
vergent essential singularity for z < zs. The crossover exponent is related to 
the ratio of exponents of the singular (power-law) behavior of the generating 
function in the limits ( z = G ,  q--* 1 - )  and (z--*z Z ,  q = l )  [ that  is, if 
G(G, q ) ~  A ( 1 -  q) - r ,  as q--* 1 - ,  then $ = Ys ~/~-J~]- This behavior defines a 
tricritical point mathematically. [We are using the (limited) physical defini- 
tion of a tricritical point as the (critical) meeting of a line of critical points 
smoothly with a line of first-order transitions. ] 
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It will be seen in the stacking models that there is no tricritical point. 
However, one can still ask whether there is some form of crossover scaling 
around the points (z = 1, q = 1) and (z = z , ,  q = 1). We shall explore this 
question and show that there is a scaling function around the second point 
for the generating function (and for the area partition function around 
z = z, for large m). 

2. THE GENERATING FUNCTIONS 

2.1. Discrete Models 

We can derive the area-perimeter generating function for each of the 
models by using an inflation process (n' 1o. 17): the height of the polygon is 
increased by one lattice spacing and concatenated with rows of height one. 
This process generates all polygons of height larger than one, so that we 
have to add explicitly columns of height one after inflation in order to get 
all the polygons (see Fig. 3). Written as a functional equation, we have 

G , ( x , y , q ) = ( 1  Y 
- q x ) "  

- -  G,(qx,  y , q ) +  yq.___~x (2.1) 
1 - qx 

(o) 

Co(z) 

= + m 

q z  
y Co(qz) Y 1 - qz 

= -{- 

C~(x) y ~ C,(qz) Y x q--zqz 

(2) 

-t- m 

Fig. 3. Diagrammatic form of the functional equations for (0) rectangles, (1) Ferrers 
diagrams, and (2) stacks. 
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where the parameter s is equal to the number of concatenated rows. We 
identify rectangles with s = 0, Ferrers diagrams with s = 1, and stacks with 
s=2 .  Solving Eq. (2.1) by iteration leads to 

Gs(x ' Y, q)= ~ x(yq)" (2.2) 
,= ,  (xq; q)~-i (1 - xq ' )  

where we have used the q-product notation 

n - - 1  

(t;q),,= I-I (1 - tq  m) (2.3) 
m = O  

For rectangles and Ferrers diagrams we can present q-series expansions 
that directly show the symmetry of the models: 

q"2(1 
Go(x, y, q) = 

(xy)" ~ q2~X y ~ 

(2.4) q.2 
Gl(x, y, q) = 

(xy)" 
. -I  ( q x ~  q), 

Also, we have three special cases in which we can evaluate the generating 
functions further. First, G~(1, y, q) is simply the series expansion for the 
q-exponential, so that 

1 
G,(1, y, q) 1 (2.5) 

(Yq; q)oo 

Second, if we consider the area-only generating function for stacks, tlS) we 
get 

1 ~, (--  11" q (~) (2.6) G2(1, 1, q) (q; q)L, ,=0 

This result can be derived using the transformation 

~ ~ q" ~, q(~)(--q")" 
=1 (q;q), (q''q)~176 

. . -  ~ (q; q), ,,=o (q; q),- 
= ~ ( - l ) " q ( ' ~ )  ~ (q '+")"  

m=o i~,q)m~ .=1"' (q; q),, 
= ~ ( - 1 ) ' q ( ' ~ ) (  1 ) 

,,=0 (q;q),- iql+,~;q)o ~ 1 

1 ~ ( -  1)" q (7) (2.7) 
(q; q)o~ ,.=o 
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Finally, for q = 1, one gets the perimeter-generating functions 

xy(1 - x )  ~-j G,(x, y, 1 ) -  (2.8) 
(1 --x)S--y 

2.2.  S e m i c o n t i n u o u s  M o d e l s  

One can consider taking the semicontinuous limit of the models, either 
in a horizontal or vertical direction, by introducing a lattice spacing a and 
considering the limit a--* O. For convenience, we introduce the notation 

tr = --log x, z = --log y, e = - l o g  q (2.9) 

One can solve the horizontal limit problem directly via integral equation 
methods, t~s'9) This yields the solutions 

y,, 
G~ h)(x'y'q)-- ~ , , - I  (~r+mey(e+ne) 

n ~ l  I l r n =  l 

F'(cr/e+ 1) (yle')" 
(2.10) 

.=~/" F~(cr/e+n+ 1) (n+ale) 

Hence for rectangles we have the solution 

G(oh~(x, y, q)=lexp (a--~) B.,~ (~+ l, O) (2.11) 

where Bx(a, b) is the incomplete beta function. For Ferrers diagrams the 
solution can be written in terms of the incomplete gamma function y(a, b) 
a s  

G~h)(x,y,q)=exp Y--a-log y ~ + 1 ,  (2.12) 
8 8 

The solution for stacks is expressible in terms of a less common hyper- 
geometric function. For q =  1 one obtains the perimeter-generating 
functions 

G]h)(x, y, 1 ) = tr'- ly 
- -  ( 2 . 1 3 )  
tr s -  y 

One can also take the semicontinuous limit in the horizontal direction of 
the discrete solution (2.2) by 

G~h)(x, y, q) = lim a ~ -~G,(x a, a~y, q") (2.14) 
a ~ O  

which leads to the same solution. 
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On the other hand, in order to take the limit in the vertical direction, 
we write 

Gr y, q ) =  lim Gs(ax, y~, qa) (2.15) 
a ~ 0  

and taking this limit in (2.1) leads to the differential equation 

0 G(~)tx + rG~V)(x, = x[  1 + sG~~ ex ~x s , , Y, q) Y, q) Y, q) ] (2.16) 

For s = 1, 2 the solution is given by an expression which again involves an 
incomplete gamma function 

G'9(x, y, q ) =  exp ~ - - ~ l o g  y ~ +  1, (2.17) 

Note the identity 

G(f)(x, y, q) = �89 y, q) (2.18) 

This arises because there is a mapping between the configuration of stacks 
and Ferrers diagrams in this limit. Briefly, one can build a stack of 
horizontal length nx from a Ferrers diagram by starting with the tallest 
column of the Ferrers diagram and successively choosing to place the next 
largest column to either side of it. In this way one can construct 2 "x- ] such 
stacks. In the vertical semicontinuous limit, configurations with columns of 
equal height are of measure zero and so there is an exact relation between 
the number of such stacks and Ferrers diagrams. 

If one solves the differential equation (2.16) in the case s = 0 one gets 
�9 the result x / ( e+r ) ,  i.e., the generating function for just a single column. 
The correct vertical semicontinuous limit for rectangles is given as 

G~oV)(x, y, q ) =  lim aGo(x, ya, q,) (2.19) 
a ~ O  

and leads to 

O x (2.20) ex G(~176 Y' q) + rG~~ Y' q) - 1 - - x  

Solving this equation results in an expression again involving an incom- 
plete beta function 

(2.21) = - -  X 3, G~~ Y '  q )  e o 1 - t 
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/ i 5 5 ,  + / %  + . 
G2(y; .~) l z  G2(qy; .~) Ayq~-$~G2(qy; 1) Azyq 

Fig. 4. An alternative functional equation for stacks. 

Of course these results are expected since symmetry demands 

G (v) [x  o, ,, , Y, q) = Gto'~)l(Y, x, q) (2.22) 

However, for stacks the semicontinuous limits are different and we get 
two different generating functions. We will later demonstrate that the inter- 
esting asymptotic behaviors are the same for the two semicontinuous limits 
(as well as for the discrete model). To accomplish this we will need the dif- 
ferential equation satisfied by the horizontal semicontinuous stack solution. 
We can of course work backward and get a differential equation directly 
from (2.10), but there is also a direct derivation using functional equations. 
If we want to use horizontal instead of vertical inflation, we need to keep 
track of the top width of stacks by introducing an auxiliary variable 2 
conjugate to it, writing G2(x, y, q; 2) with G2(x, y, q)= G2(x, y, q; 1). We 
can then use the inflation process to write (see Fig. 4) 

G2(x 'y 'q ;2)=2xG2(x 'yq 'q;2)+2Yq(  x+~--~ a=,G2(x 'y 'q;2))  (2.23) 

Denoting 

H(x, y, q) =~2  ~=] G2(x '  y' q; 2) (2.24) 

we transform this to the equivalent system 

G2(x,  y, q) = xG2(x, yq, q) + yq[ x + H(x, y, q)] 

H(x, y, q) = G2(x , y, q) + xH(x, yq, q) 
(2.25) 

This system can further be transformed to one functional equation in G 2 

only, which can then be solved by standard techniques, leading to the 
already known result (2.2). Taking the semicontinuous limit horizontally in 
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this system leads to (note that differentiation with respect to 2 introduces 
an additional factor of  a) 

0 Ey fffy G~h)(x, y, q) + aG~h)(x, y, q) = y[ 1 + H~h)(x, y, q)]  

(2.26) 

ey -~y H(h)(x, y, q) + crH(h)(x, y, q) = G~h)(x, y, q) 

This system now results in a linear second-order differential equation 
for G~ h), 

(ey Offfy+ or) ly(ey 0 a) G~h'(x, y, q) +G~2m(x, y, q) (2.27) ~-fy -[- =or 

which is satisfied by the above solution (2.10), as one can readily check. 

3. THE S I N G U L A R I T Y  S T R U C T U R E  

Let us now consider the singularity structure of generating functions. 
First, we consider this singularity structure in the case of  the discrete 
models (see Fig. 5). 

Considering Eq. (2.2) as a power series in y, we see that its radius of  
convergence is given, for 0 < x ~< 1, as 

f l/q, O < q < l  

yc (x ,q )=~(1 -x )  s, q = l  (3.1) 

10,  q >  1 

For  both q < I and q = 1 the generating function has a simple pole at its 
radius of  convergence. For  x > 1 there is a divergence in the generating 
function at q =  1/x and so, considering only q <  1/x, the radius of  con- 
vergence is 

yc(x, q) = 1/q for 0 < q < 1Ix (3.2) 

For  z = x = y  this information reduces to 

f l /q ,  0 < q < l  t l ,  s = 0  
zc(q) = ] z s ,  q = 1 where zs = 1/2, s = 1 (3.3) 

((3, q >  1 { (3 - x/~)/2, s = 2  

so we see a jump discontinuity at q = 1. For  stacks and Ferrers diagrams 
we moreover  have an isolated point zc( 1 ) = z,. This is exactly the behavior 
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Fig. 5. A schematic plot of the radius of convergence qc(x, .v) of the generating function for 
the model of Ferrers diagrams. The square in the q = 1 plane is defined by the lines x = 0, 1 
and y = 0, 1. The curved regions are defined by q = 1Ix and q = l/y. 

discussed in the Introduct ion and shown on the right-hand side of  Fig. 2. 
There is a simple pole in the generating function at q = 1 for s = 1, 2 and 
a double pole for rectangles. For  q < 1, there is a pole of  order s + 1 at 
zc(q). 

Returning to the full (x, y)  plane, for s - -  1, 2 we have a whole critical 
line 

y = ( 1  - -x )  s (3.4) 

at which the behavior of  the generating function changes character. This 
line is also the radius of convergence of  the perimeter-only generating 
function Gs(x, y, 1) [-see Eq. (2.8)], as we have catalogued above. The 
function Gs(z, z, q) is the generating function of the fixed-perimeter parti- 
tion functions P,,(q), and the behavior detailed in (3.3) means that there is 
an isolated point in the perimeter free energy at q = 1. 

A similar behavior can be extracted for the semicontinuous models. 
We consider the horizontal semicontinuous limit (the behavior for the 
other limit can be extracted from what is said here and the symmetry and 
functional relations between the two limits). Even though Eq. (2.10) is a 
power series in y, let us consider the locus of  singularities in the variable 
x closest to the origin. For  0 < y < c~ this locus can be seen to be 

f l/q, 0 < q < l  

xc(y, q) = Jexp(_yUS) ,  q =  1 (3.5) 

{0,  q >  1 

when s =  I, 2. For  s = 0  and given that 0 <  y <  1, the locus xc(y, q) has the 
same behavior as above for 0 < q <  1 and q >  1 with xc(y, 1 ) =  1. For  fixed 
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y there is a pole in the generat ing function for bo th  q < 1 and q = 1 in each 
of  the models. Let us put  y = 1 for the sake of  compar i son  and let z = x. 
Now, we see that  in a fashion mimicking the discrete model  we have 

. ~l/q, O < q < l  I 1 ,  s=O 

zc(q) = ~zs,  q = 1 where z s =  l /e,  s =  1 (3.6) 

( 0 ,  q >  I ( l / e ,  s = 2  

Hence for stacks and Ferrers  d iagrams similar  j umps  in the radius of 
convergence occur in bo th  the discrete models  and  these semicont inuous 
cases at q = 1. 

Let us now consider  the generat ing function of  the fixed-area par t i t ion  
functions A,,(x, y). Examining the generat ing function in this way, one 
finds that  the area free energy is continuous.  Precisely, the radius  of 
convergence in q (and hence the free energy) as a function of  x and y is 
given as 

qc(x, y)=min{ 1, 1/x, 1/y} (3.7) 

for the discrete models  (see Fig. 5) and 

qc(x, y)  = min{ 1, l/x} (3.8) 

for the (hor izonta l )  semicont inuous cases [ for  rectangles qc(x, y ) = 0  for 
y > 1 ]. In  the discrete case there are only nonanalyt ic i t ies  at (x  = 1, y ~< 1), 
(x  ~< 1, y = 1), and at  x = y for x, y > 1. F o r  the semicont inuous case there 
are only nonanalyt ic i t ies  at  x = 1 (and also at y = 1 for rectangles). The 
significance of the line y = ( 1 - x ) "  [x=exp(-yt/S)] now is not  that  

discrete model 

Region 3 

1 

o 
o 

Region 3' 

semi-continuous model 

Region 2 

Region 1 ~  
1 

Region 3 

Fig. 6. The phase diagram in the x-y plane for the model of Ferrers diagrams. Stack 
polygons have a similar diagram (see text). The discrete case is shown on the left and the 
horizontal semicontinuous case on the right. 
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q~(x, y) exhibits a nonanalyticity, but rather that the generating function 
changes behavior on crossing this line from being finite at q~= 1 to 
becoming infinite at q~= 1 for the discrete (and semicontinuous) models. 

The phase diagram for the discrete Ferrers diagrams is depicted on the 
left-hand side of Fig. 6. The critical line y = 1 - x  separating regions 1 and 
2 transforms to the parabola y = ( 1 - x )  2 for stacks. This transition dis- 
appears for rectangles--here region 2 disappears completely. The phase 
diagram for the horizontal semicontinuous Ferrers diagrams is depicted on 
the right-hand side of Fig. 6. For rectangles there is again no region 2, and 
moreover there is a line at y = 1 heralding that the generating function has 
zero radius of convergence for y/> 1. 

We now discuss the asymptotic behavior of the generating as a func- 
tion in q in more detail in the various regions of interest. We begin with 
the discrete models. 

3.1. Discrete Models 

3.1.1. R e g ion  1. In region 1, that is, for y < ( 1 - x y  (respectively 
x, y < 1 for rectangles), the generating function converges at qc = 1 to the 
perimeter-only generating function. As qc = 1 is an accumulation point of 
poles for fixed x and y, there has to be an essential singularity in q at 
qc= 1. 

3.1.2. Reg ion  2. This region is given by y > ( 1  - x )  s and x, y <  1. 
Obviously it only exists for s = 1, 2. The generating function diverges, and 
we can compute the asymptotic behavior as q ~ 1 by using (A.4) of the 
appendix to approximate the q-products. We get for x < 1 

Gs(x, y, q)= 
x( yq )______~" (,qox;q, y 

.=l  1--q'x \ ~ ] 

~ ~ x(yq)" (1--qnx~S/2e(S/n){Li2(qx)_Li2(q,x) } 
, ,=1  1 --q"x \ 1 --qx ,/ 

I o  x( yq)" (1--qnx~S/2 e(S/,){Li2(qx)_Li2(q~x) } dn 
1--q"x \ 1 - q x  J 

= x ( 1 -- qx) -s/2 e(S/,) Li2(qx) fr ( 1 -- tx) ~/2- i 
ao 

X e ~1/'){ ~ log,-, Li2(,x)} dt (3.9) 

The integral is of the form ~ e-ag(')f(t) dt with 2 = 1/e and 

g ( t )=  - r l o g t + s L i 2 ( t x )  and f ( t ) = ( 1 - t x )  ~/2-1 (3.10) 
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There is a saddle point given by 

1 - y l / "  
g ' ( t o ) = O - ~ y = ( 1  - - t o X ) ' ~  to = (3.11) 

X 

which is in (0, 1) for y > ( 1 - x y .  Hence we can use the saddle point 
approximation 

I e -~g( '~ f (  t)  d t ~  f (  to) e -~gc'~ (3.12) 

We have 

S X  2 

g"( to)  - y l / , (  1 - y l / , )  and f ( to)  = y l / 2 -  I/s (3.13) 

Using a functional equation for the dilogarithm Li2(x) 

we can write 

7~ 2 
Li2(x) + Li2( I - x) + log(x) log( 1 - x) - ~ = 0 

g(  to) = -- trr  + s --  Li2(y I#) 

The prefactor of  the integral simplifies for q ~ 1 to 

so that 

x_ ( 1 --  q x  ) - ~/2 e(,/,) Li2(qx) ~ X ( 1 -- X) ~/2 e (~/') Li2(x} 
8 8 

(3.14) 

(3.15) 

(3.16) 

/2n\1/2  yl - 1/~] 1/2 
Q.(x ,  y ,  q)  ~ ~-~e ) (1 - -x )  s/2 [(1 _ yl/S) 

X e { ( s f~ ) [  Li2(x) + Li2(yl/S) + log{x } log( yl/.~} _ n2/6] } (3 ,17  ) 

as e - ,  0. We see that the prefactor gives trouble as x --, 0 or  y ~ 1. As the 
critical line ( y l / ~ = l - x )  is approached the exponentiated function 
vanishes [this can be seen with the help of (3.14)]. For  completencss, we 
give explicitly 

G l ( X  , y ,  q ) ~  - -  [(1 - x ) ( 1  _y ) ]1 /2  

)( e( l/e)[ Liz(x} + Li2(y) + log(x) log(y) -- ;~c2/6 ] ( 3 .18  ) 
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and 

(7) G2(x, y, q ) ~  (1 - x ) [ v / y ( 1  - x/ '~)]  '/2 

x e (2/~)[ Li2(x) + Li2(x/~) + Iogtx) log(x/~)  -- ~2/6 ] ( 3 . 1 9 )  

3.1.3. Critical Line Separating Regions 1 and 2. The critical 
line is given as y = (1 - x) ~ for s = 1, 2. We can repeat the calculation from 
the previous section, with the only difference being that the saddle point 
to = I is now at the boundary  of the integration. This means that we only 
pick up half a Gaussian integral. As mentioned in the previous section, the 
exponential part  vanishes on the critical line and we get 

~ (--~--n '~ '/2 (1 - - x )  ~/2 [ ( I  -- yl/S) y l - 1 # ]  ,/2 
G,(x, y, q) \2s8/I (3.20) 

3.1.4. Critical Lines Separating Regions 2 and 3, and 2 and 
3'. Let us first consider the asymptotics for y = 1. Again we can use the 
above calculation, leading to 

1 
Gs( x ,  I, q)  ~ ~ ( 1 - qx) --s/2 e(S/e) Li2(qx) fo ( 1 --  tx)S/2 --1 

x e -<'/~) Li2(tx) dt (3.21) 

For  s =  1, 2 we notice that the exponential part  g ( t ) = s L i 2 ( t x  ) has its 
minimum at to = 0, that  is, the integral boundary  with g'(t) = sx. Therefore 
we have 

Gs(x, 1, q) ~ 1 ( 1 - x) ~/2 e t,/`) Li2(x) (3.22) 
S 

For  rectangles on the other hand, where y = 1 separates regions 1 and 3, 
(3.21) gives directly 

Go(x, 1, q) -~, - 1 log( 1 - x) (3.23) 
8 

Identical formulas hold for x = 1 for rectangles and Ferrers diagrams 
due to their symmetry. However,  for stacks we have to work a bit harder. 
We start again with the series representation of  the generating function, but 
now we insert (A.11) to get 
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G:(1, y,q)= ~ (Yq)" ((q";q)~Y 
~  l t q-S-L,J 

(yq)" (I(n)y (1 _q,,yi2 e(,/:){ Li2(q) -- Li2(qn)} 

,,=~l--~\I(1)J \ l - q )  
oo ~: ~(Yq)" \x/~/e'/( I(n) ~s \(ll--q--qn~S/2e(S/e){gi2(q)-gi2(q~)}// (in 

=l(e__~ye \~/~J (1 -- q)-S/2 e(sle)Li2(q)~o[1 1 ( i l O g ( / ! ) ]  s ( 1 -  t) s12-1 

• e(l/e){ �9 log,-:  Li2(t)} dt (3.24) 

Except for the factor [ I ( - l o g ( t ) / e ) ]  s, the integral is identical to the one 
dealt with above. Moreover ,  we have 

I(r)=l+O(1/r) as r ~ o o  (3.25) 

As the saddle point  to = 1 - yl/S is less than one, we can continue to write 

( S  x~(s-l)l 2 
Gs(1, y, q) ~ \~-~j [ y l -  l/,(l _ ylls)]ll2 e(sl,)Li2(yi/s) (3.26) 

For  s = 1 we recover the above result, and for s = 2 we get 

G2(1, y, q ) ~  [,r _ //'~)] 1/2 e(2/e) Li2(,./~) (3.27) 

Note  that in the case of Ferrers diagrams the calculations would have 
been considerably abbreviated, since we could have evaluated the identity 
(2.5). However,  no such identity is for available stacks. 

3.1.5. Cri t ical  Point  Separat ing Regions 2, 3, and 3'. In the 
case x = 1 and y = 1, we can also utilize the calculation from the previous 
section for s = 1, 2. We get, after a few steps, 

1_  _ / e  \s/2 2 
Cs(l, e ( ' ' ) . '6  (3.28) 

Alternatively, we could have used the explicit formulas (2.5) and (2.6). For  
rectangles, the point  x = 1 and y = 1 separates regions l, 3, and 3' and we 
get 

Go(l, 1, q) , - ,~ log ( ~ )  (3.29) 

822/80/3-4-18 
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3 . 1 . 6 .  R e g i o n s  3 a n d  3'. We rewrite (2.2) as 

xyq + 1 ~-.~176 x(y_.., q )2+ l  - 
G~(x, q) Y, 1 --xq (1 ----xq)'~=~ (xq2; q),~_, (1 --xq "+') 

In region 3', where x > 1 with x > y, we therefore get as q --* 1/x 

(3.30) 

G,(x, y, q)~ 

r Y s = O  
1 - -xq'  

y 1 
s = l  

1 - x q  (y /x;  1/x)o~' 

y o~ (y/x)" 
.(1 - x  - '2 Z ( l /x ;  1/x~_i "(1/x; 1/x),,' s = 2  

- -  q )  n = l  

(3.31) 

For  s = 0, 1, these results can be transferred to region 3 as well. For  stacks, 
however, we have to argue differently; interpreting (2.2) as a series expan- 
sion in t = yq, we see that for q = 1/y the coefficients of  the series approach 
x/(x/y; 1/y)~ as n ~ oo. Therefore, we have the asymptotic behavior for 
q ~ 1/y given as 

x 1 
G~(x, y, q) (3.32) 

1 - yq (x /y ;  1 / y )L  

This matches with the above calculation for s = 0, 1 and gives the desired 
result for stacks. 

3.1.7. Critical Line Separating Regions 3 and 3'. For x =  
y > 1, we write, as above, 

x2q O0 x(xq) "+1 
G~(x,x,q)= + . .  -x "~ y' (3.33) 

1 - x q  t i -  q) , ,= , ( xq2;q~ ,_ - i~xq  ''+l) 

and now use the transformation t = xq and p = 1Ix < 1 to write 

t t o~ t" 
lx Gs(x, x, q) = - i - - ~  + (1 "-------~ ~ (3.34) 

,) ,=~ (t2p; tp)~_~ [1 -t(tp)"] 

For  p fixed and t --* 1, the first term diverges with a simple pole, whereas 
the sum diverges as 

1 1 
(3.35) 

( l - - t )  ~+~ ( p ; p ) ~  



Stacking Models of Vesicles 

Therefore, we have 

2x , 

Gs(x,x,q)~)i-_ xxq /,1 
s = O  

1 
( I /x ;  1/x)~' s= 1 

1 
- -  ( l / x ;  1 / - ~ '  s=:2 

773 

(3.36) 

3.2. Semicont inuous  Mode ls  

3.2.1. Ferrers D iagrams and Stacks. Although we have dis- 
cussed the asymptotic behavior of the discrete generating functions in detail, 
we have not yet described the crossover between the different regions, let 
alone calculated any scaling functions describing this crossover. We shall 
do this now from the semicontinuous model. First, however, let us note 
that the semicontinuous limit produces only a restricted phase diagram, as 
either region 3' or region 3 gets scaled away to infinity (see Fig. 6). Under 
the vertical limit, the critical line y = ( 1 -  x) ~ gets transformed to r = sx, 
whereas under the horizontal limit, we get y = tr ". 

To begin we examine the horizontal semicontinuous limit for Ferrers 
diagrams. From the full solution 

G~/"(x'y'q)=exP[Y-al~ e Y(~ + I ' y )  (3.37) 

we can extract most of the necessary information. However, we are most 
interested in the behavior for small e near the boundary of region 1 and 
region 2. First, we note that the behavior for small e in regions 1, 2, and 
3 (and the boundaries) is the same in this limit as for the discrete models. 
It is not too difficult to extract asymptotic formulas of the same forms 
(in e) as Eqs. (3.20), (3.17), (3.26), and (3.31). (Note that the resulting for- 
mulas are only the same in the variable e.) All this means is that if one fLxes 
y < 1 in either the discrete or the horizontal semicontinuous models one 
obtains the same phase diagram and critical behavior in the (x, q) plane. 
(Similarly for x <  1 and the vertical semicontinuous model.) Now that 
we have ascertained this, we can use the semicontinuous model to find 
more easily the scaling function around the boundary of region 1 and 
region 2. 
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Rather than use the solution itself, it is easier to work with the dif- 
ferential equation (2.16). Note that because of the relations (2.22) and 
(2.18), this also gives us the asymptotics of the vertical semicontinuous 
stacks and Ferrers diagrams. Denoting g(x) = G~h)(x, y, q), we have 

exg'(x) = (x - a) g(x) + x (3.38) 

from which we can get the crossover behavior by following ref. 10. We first 
transform the critical point to the origin, 

- e ( t + t r ) / p ' ( t ) = s t p ( t ) + ( t + a ) p 2 ( t )  where p( t )= l /g ( t+cr )  (3.39) 

Substituting p = e~ and t = e~f, we now look for the dominating terms in 
this equation for e ~ 0. This yields 0 =  ~b = 1/2, and we get a differential 
equation for the asymptotically dominant part as 

-ap'( i) = ip( i) + ,rp~( i) (3.40) 

Solving this equation and fLxing the arbitrary constant by using asymptotic 
matching with the solution for e = 0 results in the scaling solution 

(mr'~ I/2 ((tr~_e Y)2) erfc ( ~ )  G~h)(x' Y' q) "~ \"~ee J exp tr-- y (3.41) 

From this we can easily read off the whole crossover behavior as t r - y  
changes sign. Note that for a = y one obtains the same form as (3.20). The 
scaling variable is ( a -  y)/x//-e. Moreover, since 

G(h)(x, y, q) = e-"~A,,(x, y) dm (3.42) 

a direct inverse Laplace transform of the r.h.s, of Eq. (3.41) gives the scaling 
behavior of the area partition function as 

A. ( x ,Y )~ \2mj  exp[(Y-tr)(2~ma )'/2 ] (3.43) 

This gives us the form of the behavior of A,, in region 1 as described in 
Eq. (1.12) when t r> y. 

The scaling behavior around the transition at tr = 0 between regions 2 
and 3 can be read off from the full station. The incomplete gamma function 
simplifies and one gets 

G~h)(x, y, q) ~ exp(y/e)(y/s)-4 /'(2 + 1) (3.44) 
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where 2 = a/e and we see a crossover from an essential singularity in e --+ 0 
for a > 0  to a simple pole at e = - t r  for t r < 0 .  However ,  this expression 
cannot  be written as a crossover scaling form, even though the natural  
scaling variable 2 = tr/e nearly works. Note  that  this gives the form (3.26) 
for a = 0 .  

The other case to consider is the horizontal  semicontinuous limit of  
the stack model. The full solution is not  simply related to the incomplete 
g a m m a  function as is the vertical limit. However ,  here we illustrate that  it 
is dominated by a scaling solution a round the line separating regions 1 and 
2 [now this is (y  = a 2, e)]  similar to the one described above. The differen- 
tial equat ion (2.27), in the variable y, can be expanded to 

e2g"(y)+2etrg'(y)+[tr(a-e)/y-1] g(y)  = tr (3.45) 

where g(y) = GC2h)(x, y, q). The critical point  is given by the point  at which 
the prefactor of  g(y) is equal to 0. We first t ransform the critical point  to 
the origin, 

e2(tr 2 + / 2 ) [ 2 ( p ' ) 2  - p"p] - 2ecr(tr 2 + t) p'p -(tre) p2 

1 
=t r ( t r2+  t) p where p(t)=g(t+a2) (3.46) 

Substituting p = e~ and t = e~i, we now look for the dominat ing terms in 
this equat ion for e--+ 0. This yields O = ~ = 1/2, and we get a differential 
equation for the asymptotical ly dominant  par t  as 

- 2tr3/~'(r = i/~(i) + tr3/~2(i) (3.47) 

Solving this equat ion and fixing the arbi trary constant  by using asymptot ic  
matching with the solution for e = 0 results in the scaling solution 

X(n_~)  1/2 {(a2-Y'>~ r (tr2-y_.'~ 
Gt2h)(x, y, q ) ~  exp ~ 4-~a  3 -) eric \2(etr2)l /2 ] (3.48) 

One can compare  this to the scaling solution for the vertical limit, which 
is 

Gg~(x' Y' q) ~$  \2-~eJ exp ~ ~ .) eric \(2er)n/2j (3.49) 

This demonstrates  the universality of  the models: the scaling functions are 
the same, though the nonuniversal  constants differ. The "near-scaling" 
around a = 0 for G(V)tx 2 ~ , Y, q) can be easily seen to be essentially the same 
as that  described above for Ferrers diagrams [see Eq. (3.44)] using (2.18). 
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3.2.2 .  R e c t a n g l e s .  The semicontinuous limit for rectangles has a 
different phase diagram. There is a natural boundary  at y = 1, so that the 
radius of  convergence is 0 for y t> 1. In common  with the discrete model, 
it does not contain a region 2. For  the horizontal semicontinuous case the 
boundary  of  the regions 1 and 3 is x = 1. The solution 

G(10t 
~ ~ yn 

o t -~ ,Y ,q)= =l t r+ne  (3.50) 

is easily analyzed. The behavior is exactly the same in the variable e for 
fixed x and y:  that  is, region 3 has a simple pole at e = a  [see (3.31)], 
region 1 has a convergent essential singularity, and the boundary  has a 
simple pole [see (3.23)]. Also, the perimeter generating function has a 
simple pole at x = 1 for y < 1. Of  some interest, perhaps, is that the gener- 
ating function can be written in a scaling form in the variable 2 - - a l e  
around the boundary  of  regions 1 and 3: 

eG(~ Y' q) = 2 + n 
n = l  

(3.51) 

Hence, the scaling function is a Lerch function. 

APPENDIX 

q-Product Asymptotics 

Here, we discuss the asymptotics for q-products as q ~ 1. As the full 
asymptotics of  q-products has been discussed elsewhere, t19) we are rather 
brief in doing so. For  0 < q < 1 and 0 < t < 1, we are interested in the 
asymptotics of  (t;q)o~ and (q;q)~,  as e = - l o g q ~ 0 .  In this range of  
parameters the elegant Abel-Plana formula (2~ applies, and we can write 

log(t; q)o~ = l o g ( 1 - t e - ' X )  d x +  l o g ( l - t )  

l "~ log(1 - te -~:') - log(1 - te ~"y) 
+ i dy 

Jo e 2~y-  l 

1 Li2(t) + 1 ~? dy 
e ~ log( 1 - t) - 2 e 2ny - 1 

x arctan ( l t sin ey ~ 
- t cos ey /  (A.1) 
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The remaining effort lies in estimating the integral in the above formula. 
For  t < I, we see that  

arctan ( t sin ey ~ tye 
1 - t cos ey/I <~ 1 --"-~t (A.2) 

so that  the integral of  this expression is O(e). Therefore we can write 

1 
LiE(t) + 1 log( 1 -- t) + O(e) (A.3) log(t;  q)o~ = - - e  

and we have as our  first result 

(t; q)o~ ~ (1 - t) 1/2 e -Li2(')/~ (A.4) 

On the other hand,  if we set t = q, then the integral contributes as well. 
We then have 

( q s i n e y  . ~ - a r c t a n ( y )  <~ye  (A.5) arctan 
\ 1 -- q cos ey/ I 

and 

f ?  dy a rc tan(y)  1 1 e 2'~y - 1 = ~ log(2n) - 

Therefore, to leading order we obtain 

so that  now 

1 1 
1 Li2(q) + ~ log( 1 - q) + 1 - ~ log(2n) + O(e) log(q; q)oo = - e  

(A.6) 

(q; q)o~ ~ (2n/e) ~/2 e-n2/6~ (A.8) 

Here, we could also have followed Hardy  and used a conjugate-modulus 
t ransformation or (q; q)o~ to get a convergent expansion with the same 
leading term. (2~) 

Finally, we deed the asymptotics  for (q ' ;  q )~  uniformly in n. We can 
easily generalize the previous estimate by writing 

a r c t a n ( .  1 q s i n e y e y ) _ a r c t a n ( Y  ) <1 - q'--cos ye (A.9) 

1 7r 2 I 1 2z~+ O(e) (A.7) 
- e 6 + ~ O g e  
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and so it turns out that the integral needed is the remainder term in the 
Stirling formula, 

r ~ dy a r c t a n ( Y ) = l o g F ( n ) _ ( n _ ~ ) l o g n + n _ ~ l o g 2 n  (A.IO) 
2 J o e  2ny---~ 1 

We get 

with 

(q"; q) ~ ~ I(n)( 1 -- q") 1/2 e - -  L i 2 ( t i P ) / ~  (A.11) 

n"e -"(2n/n)  1/2 
I(n) = (A.12) 

F(n) 
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